www.a2zpapers.com

Exam. Code : 103206
 Subject Code: 1222

B.A./B.Sc. Semester-VI
 MATHEMATICS (Dynamics)

Paper-I

Time Allowed- ${ }^{2}$ Hours]
[Maximum Marks- 50
Note :-Attempt FNF questions in all by selecting at least TWO questions frem each Section. All questions carry equal matı's.

SECTION:-A

1. Define and discuss the SHM oía p article moving in a straight line.
2. A particle of unit mass begins to move rivin a distance ' a ' towards a fixed centre which repels accordi.gg to the law $\mu \mathrm{x}$. If its initial velocity is $\sqrt{\mu \mathrm{a}}$, show that i_{t} will continuously approach the fixed centre, but will never reach it.
3. A mass of 7 gm draws up a mass of 5 gm connected to it by a string passing over a smooth pulley. At the end of the first second, the string is cut. Find the velocity of the mass 7 gm at the end of the next second.

www.a2zpapers.com

4. A particle is dropped from the top of a tower h meter high and at the same time another particle is projected upwards from the bottom. They meet when upper one has described $\frac{1}{\mathrm{n}}$ th of the distance. Show that their speeds r.v.n they meet are in the ratio $2:(n-2)$ and the initial speed of the lower is $\sqrt{\frac{1}{2} n g h}$.
5. Discuss the rectiiinear motion of a particle when its acceleration is expressed as function of :
(i) Time
(ii) Distance.

SECTION-L

6. The equation $\ddot{\mathrm{x}}+\mu \mathrm{x}+2 \mathrm{k} \dot{\mathrm{x}}=0$ reprivents damped harmonic oscillations of a particle moving in a straight line. Find the solution of this equation and $1 n^{\text {nt }}$ erpret your result.
7. Define a conical pendulum. Show that the vertical dupth. of the particle in a conical pendulum, below the fixed point varies inversely as the square of the angular velocity and is independent of the length of the string.

www.a2zpapers.com

8. Define conservative system of forces. When a particle undergoes displacement under the action of a conservative system of coplanar forces, prove that the sum of K.E. and P.E. remains constant.
9. A seconds pendulum which gains 10 seconds per day at ine place, loses 10 seconds per day at another. Compare the acceleration due to gravity at the two places.
10. A particle of unit mass is projected with velocity v and inclination $\alpha \vdots$ the horizontal in a medium whose resistance is $\mathrm{k} \times$ velocit. $^{\text {. Show that if } \mathrm{k} \text { is small, the equation of the }}$ path is approx inatatly.

$$
\mathrm{y}=\mathrm{x} \tan \alpha-\frac{g \mathrm{x}^{2}}{-v^{2} \cos \alpha}-\frac{\mathrm{kgx}^{3}}{3 v^{3} \cos ^{3} \alpha}
$$

